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Efficient and simple synthesis of 3-aryl-1H-pyrazoles
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Abstract—Efficient preparation of 3-aryl-1H-pyrazoles by reaction of 1-protected-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-
1H-pyrazoles with (het)aryl halides is described. The choice of THP protecting group is discussed.
� 2006 Elsevier Ltd. All rights reserved.
The synthesis of arylpyrazoles is of major interest. In-
deed this class of heterocycles is usually used in pharma-
cochemistry and agrochemistry.1,2 The main methods
for preparing these heterocycles consist of reaction
between hydrazines and b-difunctional compounds3

or 1,3-dipolar cycloadditions of diazo compounds onto
triple bonds.4

With the aim of constituting a library of pyrazoles
linked to various scaffolds, we needed to develop effi-
cient methodologies of cross-coupling reactions. These
reactions were already achieved with halopyrazoles5a

and more recently with pyrazole nonaflates5b and tri-
flates5c but very few references described the cross-cou-
pling reaction of pyrazolyl boronic derivatives. In our
knowledge, only Young et al. described the synthesis
of 1H-pyrazol-3-yl-boronic acid and performed a Suzuki
coupling with this compound. Since 3-halo-1H-pyr-
azoles require harsh reaction conditions, we decided to
study the synthesis of new stable pyrazolylboronic acid
derivatives and their reactivity toward haloaromatics
using Suzuki cross-coupling reaction techniques.
0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Herein we describe the very promising results concern-
ing the synthesis of 3-aryl-1H-pyrazoles by the reaction
of 1-protected-5-(4,4,5,5-tetramethyl-1,3,2-dioxaboro-
lan-2-yl)-1H-pyrazole with (het)aryl halides.

To begin, we focused on the synthesis of 5-pyrazolyl
boronic species. First the protection of pyrazole with
an efficient and then labile protecting group is necessary.
For this reason the use of [2-(trimethylsilyl)ethoxy]-
methyl (SEM) function is recommended.6 1-SEM-1H-
pyrazole 2 is obtained with a good yield by the reaction
of sodium hydride and then [2-(trimethylsilyl)-
ethoxy]methyl chloride in tetrahydrofuran according to
the method of Fugina et al. (Scheme 1).6a

At the beginning of our work only some references and
patents mentioned the use of 1-SEM-1H-pyrazol-5-yl-
boronic acid7 and only Han et al.7a described its synthe-
sis. We first synthesized this compound but unfortu-
nately in our hands the reaction was not complete and
we obtained only an unseparable mixture of boronic
acid and starting material. For this reason and because
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pinacyl esters are known to be more stable and often
easier to isolate and to characterize, we decided to
synthesize the 1-SEM-5-(4,4,5,5-tetramethyl-1,3,2-dioxa-
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borolan-2-yl)-1H-pyrazole 3. Concerning this product,
no reference was found in the literature. Its synthesis re-
quires the reaction of an organolithium compound with
a trialkyl borate followed by a transesterification. In our
case the azolyl lithium species is generated by direct
metalation of 1-SEM-1H-pyrazole with n-BuLi at
�70 �C in tetrahydrofuran, as described by Fugina.6a

Then the lithio intermediate, stabilized by intramolecu-
lar coordination with the oxygen atom of the SEM
group, is quenched by the addition of triisopropyl-
borate.8 The transesterification is then realized adapting
Table 2.
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the method of Coudret9 with pinacol. The 1-SEM-
5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyr-
azole 3 was obtained with 75% yield as a stable pale
yellow oil.

This new boronic ester 3 was then coupled with a variety
of different (het)aryl halides under standard Suzuki
cross-coupling reaction type conditions.10,18 The yields
were good and the resulting 1-SEM-5-aryl-1H-pyrazoles
4a–h were purified by column chromatography (Table
1).

During the following deprotecting step, we encountered
some difficulties. In fact under mild conditions using
tetra-n-butylammonium fluoride in tetrahydrofuran at
room temperature, no deprotection occurred. This one
needed more drastic conditions with excess of tetra-n-
butylammonium fluoride in refluxing THF for a long
period, more than 12 h. In these conditions deprotected
3-aryl-1H-pyrazoles 5a–d were obtained with 60–95%
yields (Table 2).6a

Without explanations being found and contrary to what
was observed with the pyrrole series11 it was impossible
to produce the N-deprotection in the presence of carb-
oxylate moiety and in all cases, carboxylates 4e–g led,
whatever the conditions, to the N-protected carboxylic
acids 5e–g and all the starting material was consumed
(Table 3).

In a similar manner, only one SEM group of the disym-
metric bipyrazole 4h was removed to give the mono-pro-
tected 5h. Oddly the SEM group of 5h was unremovable
under standard conditions (Scheme 2). The use of other
reagents such as HF or HCl conducted to very poor
results without isolated compound.

Vis-a-vis such problems and because SEM chemistry is
very expensive, we search for an other protecting group
possessing favorable requirements: the presence of an
oxygen atom able to orient the lithiation on a of nitro-
gen atom, stability in basic conditions and lability under
acid ones.
Although tetrahydropyran (THP) was not widely used
for protection of NH groups, a survey of the literature
showed us that it was nevertheless used with success in
the pyrazole chemistry.12 So the tetrahydropyranyl moi-
ety was introduced by reacting pyrazole with dihydropy-
ran as described by Young et al.12a We obtained the
1-THP-1H-pyrazole 6 in quantitative yield. This protect-
ing pyrazole was then engaged in the lithiation reaction
using slightly modified literature procedure.12a The
lithio pyrazole was then reacted with triisopropylborate
(B(OiPr)3) and transesterification with pinacol finally
gave the expected 1-THP-1H-pyrazolylboronic ester 7
with a very good yield (90%) as a stable white solid
(Scheme 3).

At this stage a question still has to be raised to know
whether this THP protecting group would be stable
under the Suzuki cross-coupling reaction conditions
ecause Young et al. prepared the N-deprotected
boronic acid before the cross-coupling reaction12a and
no example of such N-THP-boronic ester was described
in the literature. Fortunately 7 behaved as a very
efficient partner of cross-coupling reactions and gave,
under the same conditions as the one described before
with compound 3, 1-THP-5-aryl-1H-pyrazole 8a–l with
satisfactory yields (Table 4).18 However, in these condi-
tions the cross-coupling reaction remained unsuccessful
starting from 4-chloroanisole.

Finally taking as a starting point the works of Röder13

and Beylin12c we found that treatment of these protected
pyrazoles 8a–l with ethanolic HCl at room temperature
was able to cleave the THP after 1 h of reaction what-
ever the substituent of the (het)aryl moiety (Table
5).12b,c,13,19 Thus we obtained 3-aryl-1H-pyrazoles 9a–l
with good yields, in mild conditions.

To conclude we have found that THP was an excellent
N-protecting group for pyrazoles, able to orient the
lithiation, to stabilize the boronic ester 7, permitting
a good reactivity in Suzuki cross-coupling reaction
and having a great lability in acid conditions. This
methodology is currently under application to produce
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new derivatives with potential interest in medicinal
chemistry.
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3008; (b) Röder, J. C.; Meyer, F.; Pritzkow, H. Organo-
metallics 2001, 20, 811–817; (c) Beylin, V. G.; Townsend,
L. B. J. Heterocycl. Chem. 1988, 25, 97–106.
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